- Web Scraping Python Beautifulsoup Login
- Web Scraper Python Beautiful Soup Pdf
- Web Scraping Python Beautifulsoup Stackoverflow
- Web Scraper Python Beautifulsoup Pdf
Something that seems daunting at first when switching from R to Python is replacing all the ready-made functions R has. For example, R has a nice CSV reader out of the box. Python users will eventually find pandas, but what about other R libraries like their HTML Table Reader from the xml package? That’s very helpful for scraping web pages, but in Python it might take a little more work. So in this post, we’re going to write a brief but robust HTML table parser.
Our parser is going to be built on top of the Python package BeautifulSoup. It’s a convenient package and easy to use. Our use will focus on the “find_all” function, but before we start parsing, you need to understand the basics of HTML terminology.
An HTML object consists of a few fundamental pieces: a tag. The format that defines a tag is
and it could have attributes which consistes of a property and a value. A tag we are interested in is the table tag, which defined a table in a website. This table tag has many elements. An element is a component of the page which typically contains content. For a table in HTML, they consist of rows designated by elements within the tr tags, and then column content inside the td tags. A typical example is
Since Python version wasn't specified, here is my take on it for Python 3, done without any external libraries (StackOverflow). After login use BeautifulSoup as usual, or any other kind of scraping. Likewise, script on my GitHub here. Whole script replicated below as to StackOverflow guidelines. Your web scraper will parse the HTML to pick out the relevant pieces of information and filter that content for specific words. You can scrape any site on the Internet that you can look at, but the difficulty of doing so depends on the site. This tutorial offers you an introduction to web scraping to help you understand the overall process. Web crawling is a component of web scraping, the crawler logic finds URLs to be processed by the scraper code. A web crawler starts with a list of URLs to visit, called the seed. For each URL, the crawler finds links in the HTML, filters those links based on some criteria and adds the new links to a queue.
It turns out that most sites keep data you’d like to scrape in tables, and so we’re going to learn to parse them.
Parsing a Table in BeautifulSoup
To parse the table, we are going to use the Python library BeautifulSoup. It constructs a tree from the HTML and gives you an API to access different elements of the webpage.
Let’s say we already have our table object returned from BeautifulSoup. To parse the table, we’d like to grab a row, take the data from its columns, and then move on to the next row ad nauseam. In the next bit of code, we define a website that is simply the HTML for a table. We load it into BeautifulSoup and parse it, returning a pandas data frame of the contents.
0 | 1 | |
---|---|---|
0 | Hello! | Table |
As you can see, we grab all the tr elements from the table, followed by grabbing the td elements one at a time. We use the “get_text()” method from the td element (called a column in each iteration) and put it into our python object representing a table (it will eventually be a pandas dataframe).
Now, that we have our plan to parse a table, we probably need to figure out how to get to that point. That’s actually easier! We’re going to use the requests package in Python.
So, now we can define our HTML table parser object. You’ll notice we added more bells and whistles to the html table parser. To summarize the functionality outside of basic parsing:
The tuples we return are in the form (table id, parsed table) for every table in the document.
Let’s do an example where we scrape a table from a website. We initialize the parser object and grab the table using our code above:
Rank | Player | Team | Points | Games | Avg | |
---|---|---|---|---|---|---|
0 | 1 | Cam Newton | CAR | 389.1 | 16 | 24.3 |
1 | 2 | Tom Brady | NE | 343.7 | 16 | 21.5 |
2 | 3 | Russell Wilson | SEA | 336.4 | 16 | 21.0 |
3 | 4 | Blake Bortles | JAC | 316.1 | 16 | 19.8 |
4 | 5 | Carson Palmer | ARI | 309.2 | 16 | 19.3 |
If you had looked at the URL above, you’d have seen that we were parsing QB stats from the 2015 season off of FantasyPros.com. Our data has been prepared in such a way that we can immediately start an analysis.
As you can see, this code may find it’s way into some scraper scripts once Football season starts again, but it’s perfectly capable of scraping any page with an HTML table. The code actually will scrape every table on a page, and you can just select the one you want from the resulting list. Happy scraping!
Once you’ve put together enough web scrapers, you start to feel like you can do it in your sleep. I’ve probably built hundreds of scrapers over the years for my own projects, as well as for clients and students in my web scraping course.
Occasionally though, I find myself referencing documentation or re-reading old code looking for snippets I can reuse. One of the students in my course suggested I put together a “cheat sheet” of commonly used code snippets and patterns for easy reference.
I decided to publish it publicly as well – as an organized set of easy-to-reference notes – in case they’re helpful to others.
While it’s written primarily for people who are new to programming, I also hope that it’ll be helpful to those who already have a background in software or python, but who are looking to learn some web scraping fundamentals and concepts.
Table of Contents:
- Extracting Content from HTML
- Storing Your Data
- More Advanced Topics
Useful Libraries
For the most part, a scraping program deals with making HTTP requests and parsing HTML responses.
I always make sure I have requests
and BeautifulSoup
installed before I begin a new scraping project. From the command line:
Then, at the top of your .py
file, make sure you’ve imported these libraries correctly.
Making Simple Requests
Make a simple GET request (just fetching a page)
Make a POST requests (usually used when sending information to the server like submitting a form)
Pass query arguments aka URL parameters (usually used when making a search query or paging through results)
Inspecting the Response
See what response code the server sent back (useful for detecting 4XX or 5XX errors)
Access the full response as text (get the HTML of the page in a big string)
Look for a specific substring of text within the response
Check the response’s Content Type (see if you got back HTML, JSON, XML, etc)
Extracting Content from HTML
Now that you’ve made your HTTP request and gotten some HTML content, it’s time to parse it so that you can extract the values you’re looking for.
Using Regular Expressions
Using Regular Expressions to look for HTML patterns is famously NOT recommended at all.
However, regular expressions are still useful for finding specific string patterns like prices, email addresses or phone numbers.
Run a regular expression on the response text to look for specific string patterns:
Using BeautifulSoup
BeautifulSoup is widely used due to its simple API and its powerful extraction capabilities. It has many different parser options that allow it to understand even the most poorly written HTML pages – and the default one works great.
Compared to libraries that offer similar functionality, it’s a pleasure to use. To get started, you’ll have to turn the HTML text that you got in the response into a nested, DOM-like structure that you can traverse and search
Look for all anchor tags on the page (useful if you’re building a crawler and need to find the next pages to visit)
Look for all tags with a specific class attribute (eg <li>...</li>
)
Look for the tag with a specific ID attribute (eg: <div>...</div>
)
Look for nested patterns of tags (useful for finding generic elements, but only within a specific section of the page)
Look for all tags matching CSS selectors (similar query to the last one, but might be easier to write for someone who knows CSS)
Get a list of strings representing the inner contents of a tag (this includes both the text nodes as well as the text representation of any other nested HTML tags within)
Return only the text contents within this tag, but ignore the text representation of other HTML tags (useful for stripping our pesky <span>
, <strong>
, <i>
, or other inline tags that might show up sometimes)
Convert the text that are extracting from unicode to ascii if you’re having issues printing it to the console or writing it to files
Get the attribute of a tag (useful for grabbing the src
attribute of an <img>
tag or the href
attribute of an <a>
tag)
Putting several of these concepts together, here’s a common idiom: iterating over a bunch of container tags and pull out content from each of them
Using XPath Selectors
BeautifulSoup doesn’t currently support XPath selectors, and I’ve found them to be really terse and more of a pain than they’re worth. I haven’t found a pattern I couldn’t parse using the above methods.
If you’re really dedicated to using them for some reason, you can use the lxml library instead of BeautifulSoup, as described here.
Storing Your Data
Now that you’ve extracted your data from the page, it’s time to save it somewhere.
Note: The implication in these examples is that the scraper went out and collected all of the items, and then waited until the very end to iterate over all of them and write them to a spreadsheet or database.
I did this to simplify the code examples. In practice, you’d want to store the values you extract from each page as you go, so that you don’t lose all of your progress if you hit an exception towards the end of your scrape and have to go back and re-scrape every page.
Writing to a CSV
Web Scraping Python Beautifulsoup Login
Probably the most basic thing you can do is write your extracted items to a CSV file. By default, each row that is passed to the csv.writer
object to be written has to be a python list
.
In order for the spreadsheet to make sense and have consistent columns, you need to make sure all of the items that you’ve extracted have their properties in the same order. This isn’t usually a problem if the lists are created consistently.
If you’re extracting lots of properties about each item, sometimes it’s more useful to store the item as a python dict
instead of having to remember the order of columns within a row. The csv
module has a handy DictWriter
that keeps track of which column is for writing which dict key.
Writing to a SQLite Database
You can also use a simple SQL insert if you’d prefer to store your data in a database for later querying and retrieval.
More Advanced Topics
These aren’t really things you’ll need if you’re building a simple, small scale scraper for 90% of websites. But they’re useful tricks to keep up your sleeve.
Javascript Heavy Websites
Contrary to popular belief, you do not need any special tools to scrape websites that load their content via Javascript. In order for the information to get from their server and show up on a page in your browser, that information had to have been returned in an HTTP response somewhere.
It usually means that you won’t be making an HTTP request to the page’s URL that you see at the top of your browser window, but instead you’ll need to find the URL of the AJAX request that’s going on in the background to fetch the data from the server and load it into the page.
There’s not really an easy code snippet I can show here, but if you open the Chrome or Firefox Developer Tools, you can load the page, go to the “Network” tab and then look through the all of the requests that are being sent in the background to find the one that’s returning the data you’re looking for. Start by filtering the requests to only XHR
or JS
to make this easier.
Once you find the AJAX request that returns the data you’re hoping to scrape, then you can make your scraper send requests to this URL, instead of to the parent page’s URL. If you’re lucky, the response will be encoded with JSON
which is even easier to parse than HTML.
Content Inside Iframes
This is another topic that causes a lot of hand wringing for no reason. Sometimes the page you’re trying to scrape doesn’t actually contain the data in its HTML, but instead it loads the data inside an iframe.
Again, it’s just a matter of making the request to the right URL to get the data back that you want. Make a request to the outer page, find the iframe, and then make another HTTP request to the iframe’s src
attribute.
Sessions and Cookies
While HTTP is stateless, sometimes you want to use cookies to identify yourself consistently across requests to the site you’re scraping.
The most common example of this is needing to login to a site in order to access protected pages. Without the correct cookies sent, a request to the URL will likely be redirected to a login form or presented with an error response.
However, once you successfully login, a session cookie is set that identifies who you are to the website. As long as future requests send this cookie along, the site knows who you are and what you have access to.
Web Scraper Python Beautiful Soup Pdf
Delays and Backing Off
If you want to be polite and not overwhelm the target site you’re scraping, you can introduce an intentional delay or lag in your scraper to slow it down
Some also recommend adding a backoff that’s proportional to how long the site took to respond to your request. That way if the site gets overwhelmed and starts to slow down, your code will automatically back off.
Spoofing the User Agent
By default, the requests
library sets the User-Agent
header on each request to something like “python-requests/2.12.4”. You might want to change it to identify your web scraper, perhaps providing a contact email address so that an admin from the target website can reach out if they see you in their logs.
More commonly, this is used to make it appear that the request is coming from a normal web browser, and not a web scraping program.
Using Proxy Servers
Even if you spoof your User Agent, the site you are scraping can still see your IP address, since they have to know where to send the response.
If you’d like to obfuscate where the request is coming from, you can use a proxy server in between you and the target site. The scraped site will see the request coming from that server instead of your actual scraping machine.
If you’d like to make your requests appear to be spread out across many IP addresses, then you’ll need access to many different proxy servers. You can keep track of them in a list
and then have your scraping program simply go down the list, picking off the next one for each new request, so that the proxy servers get even rotation.
Web Scraping Python Beautifulsoup Stackoverflow
Setting Timeouts
If you’re experiencing slow connections and would prefer that your scraper moved on to something else, you can specify a timeout on your requests.
Handling Network Errors
Just as you should never trust user input in web applications, you shouldn’t trust the network to behave well on large web scraping projects. Eventually you’ll hit closed connections, SSL errors or other intermittent failures.
Learn More
If you’d like to learn more about web scraping, I currently have an ebook and online course that I offer, as well as a free sandbox website that’s designed to be easy for beginners to scrape.
Web Scraper Python Beautifulsoup Pdf
You can also subscribe to my blog to get emailed when I release new articles.