RStudio



  • What is R and RStudio?
  • Examples of code

R

The statistical program R is nothing more than a programming language, mainly used for data manipulation and to perform statistical analyses. At the time of writing, this language is (one of) the leading program in statistics, although not the only programming language used by statisticians.

  1. RStudio Server Pro Take control of your R and Python code An integrated development environment for R and Python, with a console, syntax-highlighting editor that supports direct code execution, and tools for plotting, history, debugging and workspace management.
  2. RStudio is an open-source integrated development environment that facilitates statistical modeling as well as graphical capabilities for R. It makes use of the QT framework for its GUI features. There are two versions of RStudio – RStudio Desktop and RStudio Server.

Publishing Methods for RStudio Connect# Overview#. You can use different methods to publish content to RStudio Connect as an end-user, from simple push-button publishing to complex CI/CD pipelines, which are described in the sections below. The RStudio IDE features for sparklyr are available now as part of the RStudio Preview Release. Using H2O rsparkling is a CRAN package from H2O that extends sparklyr to provide an interface into Sparkling Water.

In order to use R, we need two things:

  • a text editor in which to write our code
  • a place to run this code

You can download R at https://cran.r-project.org/mirrors.html. Select the CRAN mirror site closest to you, then in the box labeled “Download and Install R”, click the link corresponding to your operating system.

RStudio

This is where RStudio comes handy. RStudio is an integrated development environment (IDE) for R. R and RStudio work together. R is a program that runs all your code, and RStudio is another program that allows you to control R in a more comfortable and friendly way. RStudio has the advantage of offering both a powerful text editor for writing your code and a place to run the code written in this editor. For these reasons, I highly recommend using RStudio instead of R. (Note that RStudio requires the prior installation of the R software provided by CRAN in order to be able to function properly. Just installing RStudio on your personal computer is not enough.)

You can download RStudio at www.rstudio.com.

Now that both programs are installed on your computer, let’s dive into the main components of RStudio.

By default, the RStudio window has three panes:

  1. The console (red pane)
  2. The environment (green pane)
  3. Files, plots, help, etc. (blue pane)

The console (red pane) is where you can execute your code (more information on the red and blue panes later). By default, the text editor does not open automatically. To open it, click on File > New File > R Script or click on the button representing a white sheet marked with a small green cross in the upper left corner, then on R Script:

New R script in RStudio Strong nuclear force examples.

Text editing app for mac. A new pane (in orange below), also known as the text editor, opens in which you will be able to write your code. The code will be executed and the results displayed in the console (red pane).

Note that you can also write code in the console (red pane). However, I strongly recommend writing your code in the text editor (orange pane) because you can save the code written in the text editor (and thus execute it again later), while you cannot save the code written in the console.

To execute code written in the text editor (orange pane), you have two options:

  • Type your code and then press the “Run” button (see below) or use the keyboard shortcut CTRL + Enter (cmd + Enter on Mac). Only the chunk of code where your cursor is located will then be executed.
  • Type your code and select in the text editor the part you want to execute and then press the “Run” button or use the keyboard shortcut CTRL + Enter (cmd + Enter on Mac). All the selected code will be executed

Run code in RStudio

For example, try typing 1+1 in the text editor and execute it by clicking on “Run” (or CTRL/cmd + Enter). You should see the result 2 in the console, as shown in the screenshot below:

The text editor and the console are the panes you will use most often. The two other panes (the blue and green panes introduced earlier) will however still be very useful when using RStudio.

The environment (green pane) displays all values stored by RStudio. For example, if you type and execute the code a = 1, RStudio will store the value 1 for a, as shown in the screenshot below:

Environment pane in RStudio

This means that you can now perform any computations with a, such that if you execute a + 1, RStudio will render 2 in the console. In this pane you can also see a tab with a history of the code executed and a button to import a dataset (more on importing a dataset in RStudio).

The last pane (blue) is where you will find everything else such as your files, the plots, the packages, the help documentation, etc. I discuss about the Files tab in more detail here so let’s discuss about the other tabs:

  • Plot: where you will see the rendered plots. For instance, run plot(1:10) and you should see it in this tab. If you plotted more than one plots, you can navigate between them by clicking on the arrows. You can open the plot in a new window by clicking on Zoom and export your plot by clicking on Export. Those buttons are located just under the Plot tab (see figure below)
  • Packages: where you see all your installed packages. Only fundamental functionalities come with R. Everything else must be installed from packages. Remind that R is open source; everyone can write code and publish it as a package. You are then able to use this package (and all functions built inside this package) for free. Some packages are installed by default, all others must be installed by running install.packages('name of the package') (do not forget ' around the name of the package!). Once the package is installed, you must load the package and only after it has been loaded you can use all the functions it contains. To load a package, run library(name of the package) (this time ' around the name of the package are optional, but can still be used if you wish). You also have the possibility to install and load packages via the buttons under the Packages tab. For this, click on the button Install under Packages, type the name of the package you want to install and then click on Install. You will see that the code appears in the console. To load the package, find the package you want to load in the Packages window (you can use the search box), then click on the checkbox next to the name of the package. Again, the code is run in the console. See the figures below if needed. Note that you will need to install packages only once,1 but load packages each time you open RStudio. Furthermore, note that an internet connection is required to install a package, while it is not required to load a package
  • Help: documentation about all functions written for R. To access the help of a function, run help('name of the function') or simply ?name of the function. For example, to see the help about the mean function, run ?mean. You can also press F1 while having your cursor on a function

Step 1: click on the Install button

Step 2: type the name of the package and click on Install

Step 3: load your package by clicking on the box next to the package’s name

Now that you have installed R and RStudio and you know its main components, below are some examples of basic code.

More advanced code and analyses are presented in other articles about R, and in particular in this article about data manipulation in R.

Calculator

Compute (5*5)

Compute (frac{1}{sqrt{50pi}}, e^{-frac{(10 - 11)^2}{50}})

As you can see, some values like (pi) are stored by default so you do not need to specify its value. Note that RStudio is case sensitive, but not space sensitive. This means that pi is different than Pi but 5*5 gives the same result than 5 * 5.

Store and print values

Note that in order to store a value inside an object, using = or <- is equivalent. I however recommend using <- to follow the guidelines of R programming. You can name your objects (A and B in our case) as you like. However, it is recommended to use short and concise names (as you will most likely type them several times) and avoid special characters.

When storing values, RStudio does not display it on the console. To store a value AND print it in the console, use:

or: Ip route for mac.

Vectors

It is also possible to store more than one value inside an object via the function c() (c stands for combine).

Matrices

Or create a matrix via matrix():

You can access the help of this function via ?matrix or help('matrix'). Note that inside a function, you can have multiple arguments separated by a comma. Inside matrix(), the first argument is the vector c(-1, 2, 0, 3), the second is ncol = 2 and the third is nrow = 2. For all functions in RStudio, you can specify an argument by its order inside the function or by the name of the argument. If you specify the name of the argument, the order does not matter anymore, so matrix(c(-1, 2, 0, 3), ncol = 2, nrow = 2) is equivalent to matrix(c(-1, 2, 0, 3), nrow = 2, ncol = 2):

Generate random values

To generate 10 values based on a normal distribution with mean (mu = 400) and standard deviation (sigma = 10):

RStudio

You will have different values than mines due to the fact that they are randomly generated. If you want to make sure to have always the same random values, use set.seed() (with any numeric inside the brackets). For instance, with the following code, you should have the exact same values, no matter where and when you run it:

Plot

This is only a very limited introduction to the possibilities of RStudio. If you want to learn more, I recommend that you read other articles related to R, starting with how to import an Excel file or how to manipulate a dataset in R.

Thanks for reading. I hope this article helped you to install R and RStudio.

As always, if you have a question or a suggestion related to the topic covered in this article, please add it as a comment so other readers can benefit from the discussion.

  1. Actually you will need to reinstall your packages for each new R update. However, if you work on the same R version, you need to install your packages only once but load them everytime you open RStudio.↩︎

SheetRStudio

Related articles


Liked this post?

Get updates every time a new article is published. Server
No spam and unsubscribe anytime.Share on:

Driver Options

Connections to Oracle require the Oracle Instant Client to be installed.

  • Oracle - Please refer to Oracle’s website for instructions on how to download and setup their official driver: Oracle ODBC driver page

  • RStudio Professional Drivers - RStudio Server Pro, RStudio Connect, or Shiny Server Pro users can download and use RStudio Professional Drivers at no additional charge. These drivers include an ODBC connector for Oracle databases. RStudio delivers standards-based, supported, professional ODBC drivers. Use RStudio Professional Drivers when you run R or Shiny with your production systems. See the RStudio Professional Drivers for more information.

Package Options

There are packages that either connect via ODBC but do not provide support for DBI, or offer DBI support but connect via JDBC. The odbc package, in combination with a driver, satisfies both requirements.

Another package that provides both ODBC connectivity and DBI support is ROracle. The current version of dbplyr in CRAN does not yet fully support a connection coming from ROracle, but we are working on it.

Connection Settings

There are six settings needed to make a connection:

RStudio
  • Driver - See the Drivers section for more setup information
  • Host - A network path to the database server
  • SVC - The name of the schema
  • UID - The user’s network ID or server local account
  • PWD - The account’s password
  • Port - Should be set to 1521

dplyr Translation

Known Issues

This section will be updated as new issues are found, and when fixes are applied in the development version of the dbplyr package. The issue will be fully removed when the fix is part of of the package’s version in CRAN.

  • RJDBC support - Even though it is not considered an issue, we have found a workaround. The approach is to point the current JDBC connection to the Oracle translation inside dbplyr:

Rstudio Online

Please refer to the Issues section in dplyr to find out the latest regarding bugs and resolutions.